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Faster Math Functions

Robin Green
R&D Programmer

Sony Computer Entertainment America

What Is This Talk About?

This is an Advanced Lecture
• There will be equations
• Programming experience is assumed

Writing your own Math functions
• Optimize for Speed
• Optimize for Accuracy
• Optimize for Space
• Understand the trade-offs
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Running Order

Part One – 10:00 to 11:00
• Floating Point Recap
• Measuring Error
• Incremental Methods

- Sine and Cosine

Part Two – 11:15 to 12:30
• Table Based Methods
• Range Reduction
• Polynomial Approximation

Running Order

Part Three – 2:00 to 4:00
• Fast Polynomial Evaluation
• Higher Order functions

- Tangent
- Arctangent, Arcsine and Arccosine

Part Four – 4:15 to 6:00
• More Functions

- Exponent and Logarithm
- Raising to a Power

• Q&A
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Floating Point Formats
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32-bit Single Precision Float

Floating Point Standards

IEEE 754 is undergoing revision.
• In process right now.

Get to know the issues.
• Quiet and Signaling NaNs.
• Specifying Transcendental Functions.
• Fused Multiply-Add instructions.
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History of IEEE 754

History of IEEE 754

IEEE754 ratified in 1985 after 8 years of 
meetings.

A story of pride, ignorance, political 
intrigue, industrial secrets and genius.

A battle of Good Enough vs. The Best.
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Timeline: The Dark Ages

Tower of Babel
• On one machine, values acted as non-zero for add/subtract 

and zero for multiply-divide.

• On another platform, some values would overflow if 
multiplied by 1.0, but could grow by addition.

• On another platform, multiplying by 1.0 would remove the 
lowest 4 bits of your value.

• Programmers got used to storing numbers like this

b = b * 1.0;
if(b==0.0) error;
else return a/b; 

b = (a + a) - a;

Timeline: 8087 needs “The Best”
Intel decided the 8087 has to appeal to 
the new mass market.

• Help “normal” programmers avoid the 
counterintuitive traps.

• Full math library in hardware, using only 40,000 
gates.

• Kahan, Coonen and Stone prepare draft spec, the 
K-C-S document.
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Timeline: IEEE Meetings

Nat Semi, IBM, DEC, Zilog, Motorola, 
Intel all present specifications.
• Cray and CDC do not attend…

DEC with VAX has largest installed base. 
• Double float had 8-bit exponent.
• Added an 11-bit “G” format to match K-C-S, but 

with a different exponent bias.

K-C-S has mixed response.
• Looks complicated and expensive to build.
• But there is a rationale behind every detail.

Timeline: The Big Argument

K-C-S specified Gradual Underflow.
DEC didn’t.
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Timeline: The Big Argument

Both Cray and VAX had no way of 
detecting flush-to-zero.

Experienced programmers could add 
extra code to handle these exceptions.

How to measure the Cost/Benefit ratio?

Timeline: Trench Warfare
DEC vs. Intel
• DEC argued that Gradual Underflow was 

impossible to implement on VAX and too 
expensive.

• Intel had cheap solutions that they couldn’t share 
(similar to a pipelined cache miss).

Advocates fought for every inch
• George Taylor from U.C.Berkeley built a drop-in 

VAX replacement FPU.
• The argument for “impossible to build” was 

broken. 
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Timeline: Trench Warfare

DEC turned to theoretical arguments
• If DEC could show that GU was unnecessary then 

K-C-S would be forced to be identical to VAX.

K-C-S had hard working advocates
• Prof Donald Knuth, programming guru.
• Dr. J.H. Wilkinson, error-analysis & FORTRAN.

Then DEC decided to force the 
impasse…

Timeline: Showdown
DEC found themselves a hired gun
• U.Maryland Prof G.W.Stewart III, a highly respected 

numerical analyst and independent researcher

In 1981 in Boston, he delivered his verdict 
verbally…

“On balance, I think Gradual Underflow is 
the right thing to do.”
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Timeline: Aftermath

By 1984, IEEE 754 had been 
implemented in hardware by:

It was the de facto standard long before 
being a published standard.

• Intel
• AMD
• Apple
• IBM

• Nat. Semi.
• Weitek
• Zilog
• AT&T

Why IEEE 754 is best
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The Format
Sign, Exponent, Mantissa
• Mantissa used to be called “Significand”

Why base2?
• Base2 has the smallest “wobble”.
• Base2 also has the hidden bit.

- More accuracy than any other base for N bits.
- Base3 arguments always argue using fixed-point values

Why 32, 64 and 80-bit formats?
• Because 8087 could only do 64-bits of carry 

propagation in a cycle!

Why A Biased Exponent?

For sorting.
Biased towards underflow.

exp_max =  127;
exp_min = -126;

• Small number reciprocals will never Overflow.
• Large numbers will use Gradual Underflow.
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The Format

Note the Symmetry

Not A Number???????????????????????111111110

Positive Infinity00000000000000000000000111111110

Positive Numbers???????????????????????000000010

Positive Denormal??????????????????????1000000000

Positive Zero00000000000000000000000000000000

Negative Zero00000000000000000000000000000001

Negative Denormal??????????????????????1000000001

Negative Numbers???????????????????????111111101

Negative Infinity00000000000000000000000111111111

Not A Number???????????????????????111111111

Rounding

IEEE says operations must be “exactly 
rounded towards even”.

Why towards even?
• To stop iterations slewing towards infinity.
• Cheap to do using hidden “guard digits”.

Why support different rounding modes?
• Used in special algorithms, e.g. decimal to binary 

conversion.
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Rounding

How to round irrational numbers?
• Impossible to round infinite numbers accurately.
• Called the Table Makers Dilemma.

- In order to calculate the correct rounding, you need to 
calculate worst case values to infinite precision.

- E.g.  Sin(x) = 0.02310000000000000007

IEEE754 just doesn’t specify functions
• Recent work looking into worst case values

Special Values

Zero
• 0.0 = 0x00000000

NaN
• Not an number.
• NaN = sqrt(-x), 0*infinity, 0/0, etc.
• Propagates into later expressions.
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Special Values

±Infinity
• Allows calculation to continue without overflow.

Why does 0/0=NaN when ±x/0=±infinity?
• Because of limit values.
• a/b can approach many values, e.g.

( )

( ) 0as   
0cos1

1sin

→








→
−

→
x

x
x

x
x

Signed Zero

Basically, WTF?
• Guaranteed that +0 = -0, so no worries.

Used to recover the sign of an 
overflowed value
• Allows 1/(1/x) = x as x→+inf
• Allows log(0)=-inf and log(-x)=NaN
• In complex math, sqrt(1/-1) = 1/sqrt(-1) only 

works if you have signed zero
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Destructive Cancellation
The nastiest problem in floating point.
Caused by subtracting two very similar values
• For example, in quadratic equation if b2 ≈ 4ac
• In fixed point…

• Which gets renormalised with no signal that almost all digits 
have been lost.

1.10010011010010010011101
- 1.10010011010010010011100

0.00000000000000000000001

Compiler “Optimizations”
Floating Point does not obey the laws of 
algebra.
• Replace x/2 with 0.5*x – good
• Replace x/10 with 0.1*x – bad
• Replace x*y-x*z with x*(y-z) – bad if y≈z
• Replace (x+y)+z with x+(y+z) – bad

A good compiler will not alter or reorder 
floating point expressions.
• Compilers should flag bad constants, e.g.

float x = 1.0e-40;
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Decimal to Binary Conversion
In order to reconstruct the correct binary value 
from a decimal constant

Single float : 9 digits
Double float : 17 digits

• Loose proof in the Proceedings
- works by analyzing the number of representable values in sub-

ranges of the number line, showing a need for between 6 and 
9 decimal digits for single precision
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Approximation Error

Measuring Error

Absolute Error
• Measures the size of deviation, but tell us nothing 

about the significance
• The abs() is often ignored for graphing

approxactualabs fferror −=
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Measuring Error

Absolute Error sometimes written ULPs
• Units in the Last Place

0.1590.03141590.0314

20.03140.0312

ULPsActualApprox

Measuring Error

Relative Error
• A measure of how important the error is.

actual

approx
rel f

f
error −=1



19

Example: Smoothstep Function

Used for ease-in ease-out animations 
and anti-aliasing hard edges
• Flat tangents at x=0 and x=1

( )
2

cos
2
1)( xxf π
−=

Smoothstep Function
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Smoothstep Approximation

A cheap polynomial approximation
• From the family of Hermite blending functions.

32 23)( xxxfapprox −=

Smoothstep Approximation
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Absolute Error

Relative Error
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Relative Error Detail
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Incremental Algorithms

Incremental Methods

Q: What is the fastest method to calculate 
sine and cosine of an angle?

A: Just two instructions.
There are however two provisos.

1. You have a previous answer to the problem.
2. You are taking equally spaced steps.
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Resonant Filter
int N = 64;
float a = sin(2PI/N);
float c = 1.0f;
float s = 0.0f;
for(int i=0; i<M; ++i) {

output_sin = s;
output_cos = c;
c = c – s*a;
s = s + c*a;
...

}

Example using 64 steps 
per cycle.

NOTE: new s uses the 
previously updated c.

Resonant Filter Graph
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Resonant Filter Quarter Circle

Goertzels Algorithm
A more accurate 
algorithm
• Uses two previous samples 

(Second Order)

Calculates x = 
sin(a+n*b) for all 
integer n

float cb = 2*cos(b);
float s2 = sin(a+b);
float s1 = sin(a+2*b);
float c2 = cos(a+b);
float c1 = cos(a+2*b);
float s,c;
for(int i=0; i<m; ++i) {

s = cb*s1-s2;
c = cb*c1-c2;
s2 = s1; c2 = c1;
s1 = s; c1 = c;
output_sin = s;
output_cos = c;
...

}
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Goertzels Algorithm Graph

Goertzels Initialization

Needs careful initialization
• You must account for a three iteration lag

// N steps over 2PI radians
float b = 2PI/N;

// subtract three steps from initial value
float new_a = a – 3.0f * b;
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Goertzels Algorithm Quarter Circle
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Table Based Solutions

Table Based Algorithms
Traditionally the sine/cosine table was the 
fastest possible algorithm
• With slow memory accesses, it no longer is

New architectures resurrect the technique
• Vector processors with closely coupled memory
• Large caches with small tables forced in-cache

Calculate point samples of the function
• Hash off the input value to find the nearest samples
• Interpolate these closest samples to get the result
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Table Based Sine

Table Based Sine Error
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Precalculating Gradients
Given an index i, the approximation is…

( ) [ ] [ ] [ ])table1table(*tablesin iiix −+∆+≈

[ ] [ ]ii gradient*table ∆+=

Which fits nicely into a 4-vector…

cos-gradsin-gradcosinesine

How Accurate Is My Table?
The largest error occurs when two samples 
straddle the highest curvature.
• Given a stepsize of ∆x, the error E is:

• e.g. for 16 samples, the error will be:







 ∆−=

2
cos1 xE

( ) 0192147.016cos1 =− π
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How Big Should My Table Be?
Turning the problem around, how big should a 
table be for an accuracy of E?
• We just invert the expression…

( )
( )

( )

23
...19587.22

99.0arccos
01.01cos

%1cos1
%1

≈
>
>

−>
<−
=

N
N
N

N
N
E

π
π
π

How Big Should My Table Be?
We can replace the arccos() with a small angle 
approximation, giving us a looser bound.

Applying this to different accuracies gives us a 
feel for where tables are best used.

E
N

2
π

=



32

Table Sizes

8.7e+8~infinite10-1764-bit float

880702510-732-bit float

8870310-524-bit float

514032-1516-bit int

4262-78-bit int

7540.0017450.1 degree

3170.017451 degree

282230.00010.01% accurate

9710.0010.1% accurate

3230.011% accurate

45°360°E
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Range Reduction

Range Reduction
We need to map an infinite range of input 
values x onto a finite working range [0..C].

For most transcendentals we use a technique 
called “Additive Range Reduction”
• Works like y = x mod C but without a divide.
• We just work out how many copies of C to subtract from x

to get it within the target range.



34

1. We remap 0..C into the 0..1 range by scaling

2. We then truncate towards zero (e.g. convert to int)

3. We then subtract k copies of C from x.

Additive Range Reduction

float y = x – (float)k*C;

int k = (int)(x*invC);
// or (x*invC+0.5f);

const float C = range;
const float invC = 1.0f/C;
x = x*invC;

High Accuracy Range Reduction
Notice that y = x-k*C has a destructive 
subtraction.

Avoid this by encoding C in several constants.
• First constant C1 is a rational that has M bits of C’s 

mantissa, e.g. PI = 201/64 = 3.140625
• Second constant C2 = C - C1
• Overall effect is to encode C using more bits than machine 

accuracy.

float n = (float)k;
float y = (x – n*C1) – n*C2;
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Truncation Towards Zero
Another method for truncation
• Add the infamous 1.5 * 224 constant to your float
• Subtract it again
• You will have lost the fractional bits of the mantissa

• This technique requires you know the range of your input 
parameter…

A = 123.45   = 1111011.01110011001100110

B = 1.5*2^24 = 1100000000000000000000000.

A = A+B      = 1100000000000000001111011.

A = A-B      = 1111011.00000000000000000

Quadrant Tests
Instead of range reducing to a whole cycle, 
let’s use C=Pi/2 - a quarter cycle
• The lower bits of k now holds which quadrant our angle is in

Why is this useful?
• Because we can use double angle formulas
• A is our range reduced angle.
• B is our quadrant offset angle.

)sin()sin()cos()cos()cos(
)sin()cos()cos()sin()sin(

BABABA
BABABA

+=+
+=+
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Double Angle Formulas
With four quadrants, the double angle 
formulas now collapses into this useful form

( ) ( )
( ) ( )
( ) ( )
( ) ( )yy

yy
yy
yy

sin2*3sin
cos2*2sin

cos2*1sin
sin2*0sin

−=+
−=+

=+
=+

π
π
π
π

Four Segment Sine
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A Sine Function
Leading to code like this:

float table_sin(float x)
{

const float C = PI/2.0f;
const float invC = 2.0f/PI;
int k = (int)(x*invC);
float y = x-(float)k*C;
switch(k&3) {
case 0: return sintable(y);
case 1: return sintable(TABLE_SIZE-y);
case 2: return -sintable(TABLE_SIZE-y);
default: return –sintable(y);

} 
return 0;

}

More Quadrants
Why stop at just four quadrants?
• If we have more quadrants we need to calculate both the 

sine and the cosine of y.
• This is called the reconstruction phase.

• Precalculate and store these constants.
• For little extra effort, why not return both the sine AND 

cosine of the angle at the same time?
• This function traditionally called sincos()in FORTRAN 

libraries

( ) ( ) 





+






=






 +

16
3sin*cos

16
3cos*sin

16
3sin πππ yyy
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Sixteen Segment Sine

float table_sin(float x)
{

const float C = PI/2.0f;
const float invC = 2.0f/PI;
int k = (int)(x*invC);
float y = x-(float)k*C;
float s = sintable(y);
float c = costable(y);
switch(k&15) {
case 0: return s;
case 1: return s*0.923879533f + c*0.382683432f;
case 2: return s*0.707106781f + c*0.707106781f;
case 3: return s*0.382683432f + c*0.923879533f;
case 4: return c;
...

} 
return 0;

}

Math Function Forms
Most math functions follow three phases of 
execution

This is a pattern you will see over and over
• Especially when we meet Polynomial Approximations

1. Range Reduction
2. Approximation
3. Reconstruction
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Polynomial Approximation
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Infinite Series
Most people learn about approximating 
functions from Calculus and Taylor series

If we had infinite time and infinite storage, 
this would be the end of the lecture.

( ) K−+−+−=
!9!7!5!3

sin
9753 xxxxxx

Taylor Series
Taylor series are generated by repeated 
differentiation
• More strictly, the Taylor Series around x=0 is called the 

Maclauren series

Usually illustrated by graphs of successive 
approximations fitting to a sine curve.

( ) ( ) ( ) ( ) ( )
K+

′′′
+

′′
+′+=

!3
0

!2
000 ffffxf
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Taylor Approx of Sine

Properties Of Taylor Series

This series shows all the signs of convergence
• Alternating signs
• Rapidly increasing divisor

If we truncate at the 7th order, we get:

( ) K−+−+−=
!9!7!5!3

sin
9753 xxxxxx

75

753

00019841.00083333.016667.0
5040

1
120

1
6
1)sin(

xxxx

xxxxx

−+−=

−+−≈
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Graph of Taylor Series Error
The Taylor Series, however, has problems
• The problem lies in the error
• Very accurate for small values but is exponentially bad for 

larger values.

So we just reduce the range, right?
• This improves the maximal error.
• Bigger reconstruction cost, large errors at boundaries.
• The distribution of error remain the same.

How about generating series about x=Pi/4
• Improves the maximal error.
• Now you have twice as many coefficients.

Taylor 7th Order for –Pi/2..Pi/2
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Taylor 7th Order for 0..Pi/2

7

6

5

4

3

2

64500014029890
08200021075890
1800870314700
600038530800

16641544290
200010117320

0000231211
11000000230140)sin(

x.
x.

x.
x.

x.
x.

x.
.x

−

+−

+

+−

+−

+−

+
+−≈

Taylor 7th Order for 0..Pi/2

And now the bad news.
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Taylor Series Conclusion

For our purposes a Taylor series is next 
to useless
• Wherever you squash error it pops back up 

somewhere else.
• Sine is a well behaved function, the general case 

is much worse.

We need a better technique.
• Make the worst case nearly as good as the best 

case.
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Orthogonal Polynomials

Orthogonal Polynomials
Families of polynomials with interesting 
properties.
• Named after the mathematicians who discovered them
• Chebyshev, Laguerre, Jacobi, Legendre, etc.

Integrating the product of two O.P.s returns 
zero if the two functions are different.

• Where w(x) is a weighting function.

( ) ( )∫ 



 =

=
otherwise

 if

0
)(

jic
dxxPxPxw

j

ji
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Orthogonal Polynomials
Why should we care?
• If we replace Pi(x) an arbitrary function f(x), we end up with 

a scalar value that states how similar f(x) is to Pj(x).
• This process is called projection and is often notated as

Orthogonal polynomials can be used to 
approximate functions
• Much like a Fourier Transform, they can break functions into 

approximating components.

( ) ( ) ( )∫== dxxwxPxfPwfPf jjj

Chebyshev Polynomials
Lets take a concrete example
• The Chebyshev Polynomials Tn(x)

( )
( )
( )
( )
( )
( )

( ) ( ) ( )xTxxTxT

xxxxT

xxxT

xxxT

xxT

xxT
xT

nnn 11

35
4

24
4

3
3

2
2

1

0

2

52016

188

34

12

1

−+ −=

+−=

−−=

−=

−=

=
=
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Chebyshev Plots
The first five Chebyshev polynomials

Chebyshev Approximation
A worked example.
• Let’s approximate f(x) = sin(x) over [-π..π] using Chebyshev

Polynomials.
• First, transform the domain into [-1..1]

( )

( )x

baxbafxg

b
a

π

π
π

sin
22

=







 +

+
−

=

=
−=
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Chebyshev Approximation
Calculate coefficient kn for each Tn(x)

Where the constant cn and weighting function w(x) are

( ) ( ) ( )
n

n
n c

dxxwxTxg
k ∫−=

1

1





 =

=
otherwise

 if

2

0

π

π n
cn ( )

21
1

x
xw

−
=

Chebyshev Coefficients
The resulting coefficients

• This is an infinite series, but we truncate it to produce an 
approximation to g(x)

K=
=
=
−=

=
=
=

6

5

4

2

2

1

0

1042823690
00

6669166720
00
56923068640
00

k
.k
.k

.k
.k
.k
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Chebyshev Reconstruction
Reconstruct the polynomial in x
• Multiply through using the coefficients kn

( )
( )
( )
( )
( )
( )
( )xxxk

xxk

xxk
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xk

xk
kxg

52016
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3
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+
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Chebyshev Result
Finally rescale the domain back to [-π..π]

• Giving us the polynomial approximation 

( ) 







−
+

−
−

←
ab
bax

ab
gxf 2
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3

600545232210
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The approximated function f(x)

Chebyshev Result

The absolute error sin(x)-f(x)

Chebyshev Absolute Error
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The relative error tells a different story…

Chebyshev Relative Error

Chebyshev Approximation
Good points
• Approximates an explicit, fixed range
• Uses easy to generate polynomials
• Integration is numerically straightforward
• Orthogonal Polynomials used as basis for new techniques

- E.g. Spherical Harmonic Lighting

Bad points
• Imprecise control of error
• No clear way of deciding where to truncate series
• Poor relative error performance
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[Continued in part 2]


